This guide explains how to convert a Nondeterministic Finite Automaton (NFA) into a Deterministic Finite Automaton (DFA) using the subset construction method with emphasis on the RIP steps (Reachable, Identify, Prune).
Step 1: Understanding the Given NFA
An NFA allows multiple transitions for the same input, including ε (epsilon) transitions.
Let’s assume we are given the following NFA:
graph TD; q0 -->|a| q0; q0 -->|a| q1; q1 -->|b| q2; q2 -->|a| q1; q2 -->|b| q2;
Here:
- q0q_0 is the start state.
- q2q_2 is the accepting state.
Step 2: Apply the Subset Construction Algorithm
The DFA states will be sets of NFA states.
R: Reachable
- Start from the ε-closure of the initial state
{q0}
. - Compute transitions by taking the union of reachable states.
Transition Table for the DFA
DFA State | Corresponding NFA States | a Transition | b Transition |
---|---|---|---|
{q0} | {q0} | {q0, q1} | Ø |
{q0, q1} | {q0, q1} | {q0, q1} | {q2} |
{q2} | {q2} | {q1} | {q2} |
graph TD; A["{q0}"] -->|a| B["{q0, q1}"]; B -->|a| B; B -->|b| C["{q2}"]; C -->|a| B; C -->|b| C;
I: Identify
- Identify equivalent states.
- Here,
{q2}
is an accepting state because it containsq2
.
P: Prune
- Remove unreachable states (if any).
- All states in this example are reachable.
Step 3: Construct the Final DFA
Now, the DFA is:
graph TD; S["Start {q0}"] -->|a| A["{q0, q1}"]; A -->|a| A; A -->|b| B["{q2}"]; B -->|a| A; B -->|b| B;
Final DFA:
- Start State:
{q0}
- Accepting States:
{q2}
This is the deterministic equivalent of the given NFA.