1 polar coordinate practice
problem:
\int_{0}^2 \int_{0}^\sqrt{ 2x-x^2 }7\sqrt{ x^2 + y^2 }dydx
this tells us that y is running from 0 up to the curve
this is some circle of the form iframe which is this circle
thisis also known as
lets graph this
Desmos
we are looking to fin the top region
we can try to solve it, but it turns out to b a mess like
so lets do it the normal way
2 - vector function problem
we are given
lets use t=1
so k is
plugging this in
i & j & k \\ 6 & 1 & 1 \\ 6 & -1 & 1 \end{vmatrix} = \langle 2,0,-12 \rangle$$ $$| \vec{r}' \times \vec{r}'' | = \sqrt{ 4+144 } = \sqrt{ 148 } = 2\sqrt{ 37 }$$ $$k = \frac{2\sqrt{ 37 }}{38\sqrt{ 38 }}$$ $$\begin{vmatrix} 1 & 2 & 3 \\ 6 & 1 & 1 \\ 6 & -1 & 1 \end{vmatrix} = 1$$ ## chain order thing $$\int_{0}^8 \int _{x^2}^{64} f(x,y)dydx$$ step 1: sketch $\mathcal{D}$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/v3xpwaw3om" width=600 height="400" ></iframe> we are trying to find the area above the x^2 curve and under the y=64 line so, $$\int_{0}^{64} \int_{0}^\sqrt{ y }f dxdy$$ $$\int_{0}^1 \int_{\arcsin y = x}^ \frac{\pi}{2} f(x,y) \ dx \ dy$$ so $$y = \sin x$$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/pigfcalyyu" width=600 height="400" ></iframe> now we are tying to find the area before the line x=pi/2, and under the curve of y = sinx ## another one - converting to a polar integral $$\int_{0}^2 \int_{0}^{\sqrt{ 4-x^2 }=y}e^{-x^2 - y^2} dy dx$$ sketching $\mathcal{D}$ yields a circle centered at the origin, with a radius of 2. we are looking for the top right quadrant of the circle thus yieilds $$\int_{0}^ \frac{\pi}{2} \int_{0}^2 e^{-r^2} r \ dr \ d\theta$$ for I1: $$\int_{0}^2 re^{-r^2} \ dr$$ $$u = r^2 \ \ \ du = 2r \ dr $$ $$\frac{1}{2} \int_{0}^4 e^{-u}du$$ $$= \left. - \frac{1}{2} e^{-u}\right| _{0}^4$$ $$= - \frac{1}{2} e^{-4} + \frac{1}{2}$$ I2 $$\int_{0}^ \frac{\pi}{2} \frac{1}{2} - \frac{1}{2}e^{-4} d \theta$$ $$\frac{\pi}{2} \left( \frac{1}{2 }-\frac{1}{2}e^{-4} \right)$$ $$\frac{\pi}{4}\left( 1- \frac{1}{e^4} \right) = \frac{\pi}{4} \left( \frac{e^4-1}{e^4} \right)$$ ## another one for double integral $$\int \int_{\mathcal{D}}x dA$$ $\mathcal{D}$ is the region between $x^2 +y^2 = 16$ and $x^2 + y^2 = 4x$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/uv9eul3ghk" width=600 height="400" ></iframe> method 1 to go about solving this: 1. $x^2 + y^2 - 4x = 0$ $$x^2 - 4x + y^2 = 0$$ $$(x-2)^2 - 4 +y^2 = 0$$ $$(x-2)^2 + y^2 =4 \ \ \ r = 4\cos \theta$$ 2. $r^2 = 4r\cos \theta$ $r = 4\cos \theta$ $$I_{1}: \ \ \int r^2 \cos \theta \ dr$$ $$ \left. \frac{r^3}{3}\cos \theta \right|_{4\cos \theta}^4$$ $$\frac{64}{3}\cos \theta - \frac{64}{3}\cos^4 \theta$$ $$$\frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos \theta - \cos^4 \theta \ d\theta$$ $$\frac{64}{3} \int _{0}^ \frac{\pi}{2} \cos \theta - \frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos^4 \theta \ d\theta$$ now we just simplify mechanically $$\int_{o}^ \frac{\pi}{2} \left( \frac{1-\cos 2\theta}{2} \right)^2 d\theta$$ $$\int_{0}^ \frac{\pi}{2} \frac{1}{4} ( 1-2\cos 2 \theta + \cos^2(2\theta))d\theta$$ $$ \frac{1}{2} \int_{0}^ \frac{\pi}{2} 1+2\cos(2\theta)+\left( \frac{1+cos (4\theta)}{2} \right)d\theta$$ $$\frac{1}{4} \int_{0}^ \frac{\pi}{2} \frac{3}{2} + 2\cos(2\theta)+\frac{\cos(4\theta)}{2} d\theta$$ $$\frac{1}{4 } \left( \frac{3}{2}\theta + \sin (2\theta)+ \frac{\sin(4\theta)}{8} \right) d\theta$$