1 polar coordinate practice

problem:

\int_{0}^2 \int_{0}^\sqrt{ 2x-x^2 }7\sqrt{ x^2 + y^2 }dydx

this tells us that y is running from 0 up to the curve

this is some circle of the form iframe which is this circle

thisis also known as

lets graph this

Desmos

we are looking to fin the top region

we can try to solve it, but it turns out to b a mess like

so lets do it the normal way

2 - vector function problem

we are given

lets use t=1

so k is

plugging this in

i & j & k \\ 6 & 1 & 1 \\ 6 & -1 & 1 \end{vmatrix} = \langle 2,0,-12 \rangle$$ $$| \vec{r}' \times \vec{r}'' | = \sqrt{ 4+144 } = \sqrt{ 148 } = 2\sqrt{ 37 }$$ $$k = \frac{2\sqrt{ 37 }}{38\sqrt{ 38 }}$$ $$\begin{vmatrix} 1 & 2 & 3 \\ 6 & 1 & 1 \\ 6 & -1 & 1 \end{vmatrix} = 1$$ ## chain order thing $$\int_{0}^8 \int _{x^2}^{64} f(x,y)dydx$$ step 1: sketch $\mathcal{D}$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/v3xpwaw3om" width=600 height="400" ></iframe> we are trying to find the area above the x^2 curve and under the y=64 line so, $$\int_{0}^{64} \int_{0}^\sqrt{ y }f dxdy$$ $$\int_{0}^1 \int_{\arcsin y = x}^ \frac{\pi}{2} f(x,y) \ dx \ dy$$ so $$y = \sin x$$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/pigfcalyyu" width=600 height="400" ></iframe> now we are tying to find the area before the line x=pi/2, and under the curve of y = sinx ## another one - converting to a polar integral $$\int_{0}^2 \int_{0}^{\sqrt{ 4-x^2 }=y}e^{-x^2 - y^2} dy dx$$ sketching $\mathcal{D}$ yields a circle centered at the origin, with a radius of 2. we are looking for the top right quadrant of the circle thus yieilds $$\int_{0}^ \frac{\pi}{2} \int_{0}^2 e^{-r^2} r \ dr \ d\theta$$ for I1: $$\int_{0}^2 re^{-r^2} \ dr$$ $$u = r^2 \ \ \ du = 2r \ dr $$ $$\frac{1}{2} \int_{0}^4 e^{-u}du$$ $$= \left. - \frac{1}{2} e^{-u}\right| _{0}^4$$ $$= - \frac{1}{2} e^{-4} + \frac{1}{2}$$ I2 $$\int_{0}^ \frac{\pi}{2} \frac{1}{2} - \frac{1}{2}e^{-4} d \theta$$ $$\frac{\pi}{2} \left( \frac{1}{2 }-\frac{1}{2}e^{-4} \right)$$ $$\frac{\pi}{4}\left( 1- \frac{1}{e^4} \right) = \frac{\pi}{4} \left( \frac{e^4-1}{e^4} \right)$$ ## another one for double integral $$\int \int_{\mathcal{D}}x dA$$ $\mathcal{D}$ is the region between $x^2 +y^2 = 16$ and $x^2 + y^2 = 4x$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/uv9eul3ghk" width=600 height="400" ></iframe> method 1 to go about solving this: 1. $x^2 + y^2 - 4x = 0$ $$x^2 - 4x + y^2 = 0$$ $$(x-2)^2 - 4 +y^2 = 0$$ $$(x-2)^2 + y^2 =4 \ \ \ r = 4\cos \theta$$ 2. $r^2 = 4r\cos \theta$ $r = 4\cos \theta$ $$I_{1}: \ \ \int r^2 \cos \theta \ dr$$ $$ \left. \frac{r^3}{3}\cos \theta \right|_{4\cos \theta}^4$$ $$\frac{64}{3}\cos \theta - \frac{64}{3}\cos^4 \theta$$ $$$\frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos \theta - \cos^4 \theta \ d\theta$$ $$\frac{64}{3} \int _{0}^ \frac{\pi}{2} \cos \theta - \frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos^4 \theta \ d\theta$$ now we just simplify mechanically $$\int_{o}^ \frac{\pi}{2} \left( \frac{1-\cos 2\theta}{2} \right)^2 d\theta$$ $$\int_{0}^ \frac{\pi}{2} \frac{1}{4} ( 1-2\cos 2 \theta + \cos^2(2\theta))d\theta$$ $$ \frac{1}{2} \int_{0}^ \frac{\pi}{2} 1+2\cos(2\theta)+\left( \frac{1+cos (4\theta)}{2} \right)d\theta$$ $$\frac{1}{4} \int_{0}^ \frac{\pi}{2} \frac{3}{2} + 2\cos(2\theta)+\frac{\cos(4\theta)}{2} d\theta$$ $$\frac{1}{4 } \left( \frac{3}{2}\theta + \sin (2\theta)+ \frac{\sin(4\theta)}{8} \right) d\theta$$